Digital Mechatronics Programmes @UL

Supporting skills and talent in smart manufacturing for Ireland's factories of the future

Industry Breakfast Showcase

February 8th, 2023

Rialtas na hÉireann Government of Ireland

Human Capital Initiative

Digital Mechatronics Programmes @UL

Supporting skills and talent in smart manufacturing for Ireland's factories of the future

Industry Breakfast Showcase

February 8th, 2023

Rialtas na hÉireann Government of Ireland

Human Capital Initiative

- 8-8.30 Registration and Breakfast
- 8.30-8.45 Opening Address by Prof Conor McCarthy CONFIRM Director
- 8.45-9.15 New and Existing Mechatronics Courses @UL
 Prof. Conor McCarthy, Dr. Eoin Hinchy
- 9.15-9.45 SMARTEdu.40 Prof. Wasif Naeem,
- Queens University Belfast
- 9.45-10.00 UL@Work Dr Sinead Burke
- 10.00- 10.30 CONFIRM Tour

Agenda

Confirm Smart Manufacturing Research For a Resilient Economy, Society & Environment

Resilient Manufacturing Futures Confirm Phase 2 (2023-2029)

Resilience Drivers and their Impact on Manufacturing & SC

- Resilience develop high robustness in industrial production
 - o Resilient strategic value chains, adaptable production capacity, flexible business processes
- Pimenta et al. (2022) identify supply chain resilience capabilities as o Visibility
 - o Redundancy
 - o Flexibility
 - o Collaboration
 - o Agility

Smart Manufacturing

- o Adaptability
- o Sustainability

Covid 19

Brexit

War on Ukraine

Global Trade Wars

CONFIRM - Phase 2

- We define *Manufacturing Resilience* as highly adaptable production & supply chain systems
- Phase 2 Key Focus is on economic, societal and environmental **Resilience**
- Strong links to UN SDG
- Excellent Smart Manufacturing science is at our core!

OUR VISION

"Fundamentally Transform Industry to a Smart Manufacturing Ecosystem"

OUR (UPDATED) MISSION

"Ireland's Research Centre for smart manufacturing and supply chain systems enabling a resilient economy, society and environment"

Confirm Investigator Team

- Grown from 40 to 60 Investigators •
- Grown from 2.5% to 22% women
- Athena Swan accredited in 2022 •
- 16 KETs, and growing

CONFIRM – SMART MANUFACTURING

Smart Manufacturing

Impact

"Through outcomes created as a result of our high-quality research outputs, CONFIRM strives to support manufacturing resilience while delivering strong economic, societal and environmental impact"

Mazzucato, 2018, EC.

CONFIRM Phase 2 - Proposed Grand Challenges in Advanced Manufacturing

UN Sustainability Goals:

Grand Challenges: Heading

Grand Challenges: Description

Resilient Manufacturing Systems

Creating, developing and enabling the critical infrastructure, flexible supply bases and transparent information flows necessary to embed resilience in sustainable manufacturing ecosystems such that they are responsive to threats and severe disruptions and can answer to rising environmental and social requirements.

Future-ready Workforce

Harnessing digitalisation and automation in order to augment workers' capabilities and enhance their roles, while developing the education, skills, know-how and facilities to enable technology diffusion and knowledge absorption capacity and ensuring public awareness and support for digital transformation.

5 *Missions defined to respond to these grand challenges*

Mission #1: Adaptive Manufacturing Cell

16 PEACE, JUSTICE AND STRONG INSTITUTIONS	9 INDUSTRY, INNOVATION AND INFRASTRUCTURE	12 RESPONSIBLE CONSUMPTION AND PRODUCTION	11 SUSTAINABLE CITIES AND COMMUNITIES
		CO	♠∎₫⊞

Grand Challenges: Impact Areas

Mission Heading:

What: Description

How: Demonstrator

Why: Impact

SFI Impacts:

Easily reconfigurable manufacturing processes enable smaller batch sizes and makes production facilities more adaptable to market changes

Impacts	Economic	Societal	Environmental	
Beneficiaries	Industry	Consumers/End-users	Society/Industry	
Time scales	4-5 Years	5+ Years	5+ Years	
Novelty dimension	Flexible manufacturing lines	Personalised Products	Localised energy usage/shorter SCs	
Innovation	Feasibility – more agile	Desirability - tailored	Sustainability -	
dimension	production	products	remanufacturing enabled	
Potential Partners	SMEs, MNCs, IMR, AMC, CONNECT, Lero, Insight			

Mission #2: Distributed Making

|--|

Resilient Manufacturing

Grand Challenges: Impact Areas

Mission Heading:

What: Description

How: Demonstrator

Why: Impact

SFI Impacts:

	Distribute	d Making				
Enable decentralised local manufacturing						
Factory-in-a-Box, Universal Machine, Manufacturing Control Tower						
Ρ	roducing close more sustaina ensure the inte localising som c	r to the end co ble. Regions o egrity of their s ne core manufa apability.	nsumer is can also upply by acturing			
Economic Impacts	Societal Impacts	Intl. Engage. Impacts	Policy & Public Service Impacts			
	Environmental Impacts	Professional Service Impacts	Human Capacity Impacts			

Impacts	Economic	Societal	Environmental		
Beneficiaries	Industry/Local Markets	Urban/rural spaces	Society/Industry		
Time scales	4+ Years	4-6 Years	5+ Years		
Novelty dimension	Distributed manufacturing lines	Local production of tailored products	Localised and highly agile supply chains		
Innovation	Viability – platform	Feasibility – production of	Sustainability –		
dimension	business models &	essential products at right	deployable factories		
	more agile production	time/right place	for finite timescales		
Potential Partners	SMEs, MNCs, IMR, AM	SMEs, MNCs, IMR, AMC, I-Form, Connect, Lero,			

Mission #3: Green Supply Chain

Resilient Manufacturing

Grand Challenges: Impact Areas

Mission Heading:

What: Description

How: Demonstrator

Why: Impact

SFI Impacts:

Green	Supply	Chain

Enable an ethical and environmentally friendly supply chain.

Circular Production System, Renewable Energy System.

To prevent environmental collapse, ecological damage and social exploitation, we must redesign our end-toend supply chains.

Impacts	Economic	Societal	Environmental	
Beneficiaries	Industry	Society & Workforce	Society/Environment	
Time scales	3-5 Years	4+ Years	3-5 Years	
Novelty dimension	Circular Production systems	Greener factories and supply chains	Renewable energy systems	
Innovation	Economically	Societal Sustainability –	Sustainability – green	
dimension	sustainable production practices	healthier workplaces	production and supply chains	
Potential Partners	SMEs, MNCs, IMR, AMC, I-Form, FMI			

Mission #4: Manufacturing Transition Platform

Grand Challenges: Impact Areas

Mission Heading:

What: Description

How: Demonstrator

Why: Impact

SFI Impacts:

Impacts	Economic	Societal	Environmental	
Beneficiaries	Industry & Society	Society, Higher Education	Society/Industry	
Time scales	2+ Years	2+ Years	5+ Years	
Novelty dimension	Open digital platform for best practice	Research and education modules downloadable	Best practice leads to more sustainable industry & society	
Innovation dimension	Viability – platform de-risking technology adoption	Desirability – better workplace environments	Viability – platform enables better environmental business decisions	
Potential Partners	SMEs, MNCs, IMR, AMC, I-Form, FMI, General Public			

Mission #5: Digitally Enabled Work

Future-ready Workforce

Digitally Enabled Work

Grand Challenges: Impact Areas

Mission Heading:

What: Description

How: Demonstrator

Why: Impact

SFI Impacts:

Create a collaborative workforce through technology that is human centred and Al powered.					
	Digital Environ Design, C	ment for Colla obot Ecosyst	aborative em,		
- V a	To empower people and teams in the world of work as technology advances and automation replaces menial tasks				
	Societal Impacts				
Health & Wellbeing Impacts			Human Capacity Impacts		

Impacts	Economic	Societal	Environmental	
Beneficiaries	Industry & Society	Consumers/End-users	Society/Industry	
Time scales	4-5 Years	4+ Years	5+ Years	
Novelty dimension	Remote control & maintenance of production systems	Flexible & distributed work practices	Commuting & business travel optimised	
Innovation	Viability - distributed	Desirability – talent	Sustainability – flexible	
dimension	& connected workforce underpins new business models	acquisition & retention through flexible work	work practices invigorate cities & rural regions	
Potential Partners	MNCs, SMEs, Worker representative groups, Public, ICT & Tech Sectors			

Research Excellence

"We strive to excel in cyber-physical manufacturing systems and digital supply chains research, and place a strong emphasis on high quality research outputs in high impact journals and conferences"

Multi-Modal Manufacturing Big Picture Trajectory

For the first time since the Industrial Revolution, the world is regaining the ability to deliver personalised production at scale

Phase 2 – Excellent Science - Five Core Research Themes

Cognitive Production Systems

Foundations: Key Enabling Technologies

Distributed SC & Manufacturing Systems

Foundations: Key Enabling Technologies

Secure Future Factory & SC Systems

Foundations: Key Enabling Technologies

Human-Machine Collaborative Systems

Foundations: Key Enabling Technologies

Circular Manufacturing & SC Systems

Foundations: Key Enabling Technologies

Phase 2 Research Programme - Mission-based Approach

Digital Mechatronics Programmes @UL~

Supporting skills and talent in smart manufacturing for Ireland's factories of the future

Industry Breakfast Showcase

February 8th, 2023 @ CONFIRM Centre, RSVP to Sinead.a.Mellett@ul.ie 8:00-10:30am

Registration/Breakfast

BE/ME Digital Mechatronics, UL@Work

International Digital Mechatronics Erasmus+ Programme SMARTEdu4.0

Tour of the CONFIRM Centre for Smart Manufacturing Research

CONFIRM - Park Point | Dublin Road | Castletroy | Limerick | V94 C928

Advancing Digital Talent in S+E @ UL

Some highlights

- Mechatronics M.Eng.
- PD-Eng in Principal Engineering
- Industrial Masters in Equipment Systems Engineering
- Confirm's Structured PhD programme
- MSCA co-fund SMART 4.0
- Erasmus+ SmartEdu4.0 programme
- Over 70 undergraduate and postgraduate programmes nationally
- All-Island Digital Manufacturing PhD programme white paper
- SALI Chair in Digital Engineering
- Chair in Advanced Manufacturing

Smart Manufacturing

Smart Manufacturing

BE/ME Digital Mechatronic Engineering

A SoE/ECE Inter-departmental Enhanced Workplace based BE/ME Programme

Faculty of Science + Engineering

BE/ME Digital Mechatronic Engineering

- Combination of mechanical, electronic, robotic and software engineering systems
- Underpins many sectors (as shown right)
- Used extensively in modern manufacturing industries
- Becoming one of the fastest growing career areas
- Manufacturing sector in Ireland employs over 260,000 people directly and a further 230,000 indirectly
- Responsible for 34.5% GDP in 2020

Manufacturing in Ireland by the numbers

260,000

260,000 people -12% of total employment

€12.5 billion

£12.5 billion in wages and employment taxes annually

150,000

Irish manufacturers employ 150,000 people abroad; 60,000 in the US and 25,000 in the UK.

€1.7 billion

E1.7 billion of tangible investment

28.8%

64%

28.8%, or over €4.4 billion of corporation tax

€20 billion

E20 billion spent each year on goods and services from suppliers in the trish economy

90%

Irish owned manufacturing exporters grew sales by over 80% between 2010 and 2021

Inward FDI manufacturers grew their exports by 64% in the same period

€165.2bn

The state exported a record €165.2 billion worth of goods in 2021

BE/ME Digital Mechatronic Engineering - Programme Design Team

Dr. Alan Ryan

Dr. Sinead Mellett

Dr. Ciaran Eising

g Dr. Mark Halton

Dr. Ger Dooly

Dr. Sinead Burke

rke Prof. Martin Hayes Dr. Ronan O'Higgins Prof. Colin Fitzpatrick Pro

Prof. Conor McCarthy

Co-Designed and delivered by School of Engineering & Dept. of Electronic & Computer Engineering

BE/ME Digital Mechatronic Engineering - Programme Outline

- Integrated BE/ME (4/5 Year, May Finish)
- Workplace Based (extended 12/13 Month Co-Op Placement)
- 270/330 ECTS Credits
- Common Entry through LM116 Engineering (Common Entry)
- Start-of-the Art Labs (Mechatronics M.Eng, UL @ Work, Confirm Centre)
- Strong links to Industry
- Strong links to R&D
- Will seek accreditation through *Engineers Ireland*

Year 1 - LM116 Common Entry Engineering

Semester 1		Semester 2			
	Core			Core	
Code	Title	ECTS	Code	Title	ECTS
ME4001	Introduction to Engineering	3	MA4002	Engineering Mathematics 2	6
MA4001	Engineering Mathematics	6	ME4111	Engineering Mechanics 1	6
ME4121	Engineering Science 1	6	ME4412	Fluid Mechanics 1	6
EE4001	Electrical Engineering 1	6	MT4002	Materials 1	6
EE4011	Engineering Computing 1	6	-	<i>Choose One of three Electives Below</i>	
CH4001	Chemistry for Engineers	3			
	Electives : None			Electives : Choose 1	
Code	Title	ECTS	Code	Title	ECTS
			ME4042	Introduction To Design For Manufacture	6
			ME4032	Structural Engineering Design	6
			ID: 8002	Introduction to Digital Mechatronics	6

Year 2 – B.E. Digital Mechatronic Engineering

Semester 3			Semester 4		
Core			Core		
Code	Title	ECTS	Code	Title	ECTS
MA4003	Engineering Maths 3	6	MA4004	Engineering Maths 4	6
ME4112	Engineering Mechanics 2	6	DM4004	Plant Automation	6
ME4213	Mechanics of Solids 1	6	ME4113	Applied Mechanics	6
ET4013	Communications Networking Fundamentals	6	EE4214	Control 1	6
CE4703	Computer Software 3	6	EE4524	Digital Systems 3	6

Year 3 – Extended Co-Op Option (12/13 month Placement)

Summer			Semester 5			Semester 6		
Core			Core			Core		
Code	Title	ECTS	Code	Title ECTS		Code	Title	ECTS
CO4230	COOPERATIVE EDUCATION 1	30	ID:8194 COOPERATIVE EDUCATION 2A		15	ID:8195	COOPERATIVE EDUCATION 2B	15
			Students on Extended Co-op: The five modu garner 30 ECTS Credits in place of a standarc			dules belo Ird Semes	ow are taken in blended form ter 6	nat to
			Se	mester 5 (Electives None	e)	Semester 6 (Electives None)		
			Code	Code Title ECTS C		Code	Title	ECTS
			ID:8039	Critical Problem Solving*	6	ID:7979	Introduction to Machine Learning for Engineers*	6
			AU4043	LEAN THINKING / LEAN TOOLS [*]	6	AU3131	INTRODUCTION TO QUALITY MANA GEMENT*	6
* Delivered in a blended format		ID8316	Enhanced Placement Engineering Portfolio 1*	3	ID:8096	Enhanced Placement Engineering Portfolio 2*	3	

Year 3 – Standard Co-Op Option

Summer				Semester 5		Semester 6		
Core			Core			Core		
Code	Title	ECTS	Code	Title	ECTS	Code	Title	ECTS
CO4230	COOPERATIVE EDUCATION 1	30	CO4310	COOPERATIVE EDUCATION 2	30	MF4756	Product Design & Modelling	6
						DM4016	Product Automation	6
						EE4044	Communication & Network Protocols	6
						ET4224	Robotics 1: Sensors and Actuators	6
						ID:7979	Introduction to Machine Learning for Engineers	6

Year 4 : Semester 7 - B.E. Digital Mechatronic Engineering

	Core		BE/ME Option (Choose 1)					
Code	Title	ECTS	Code	Title	ECTS			
EE4003	The Engineer as a Professional	6	ID:8097	Project 1 Digital Mechatronic Engineering (only if BE path chosen)	6			
ET4031	Electrical Automation	6	ET4023	Introduction to Security & Cryptography (only if ME path chosen)	6			
CE4051	Intro to Data Engineering & 6 Machine Learning							
	Streams : Choose 1 Stream							
1. Digital Robotic Engineering			2. Digital Manufacturing Engineering					
Code	Title	ECTS	Code	Title	ECTS			
CE4041	Artificial Intelligence	6	DM4017	Simulation Modelling & Analysis	6			

Year 4 : Semester 8 - B.E. Digital Mechatronic Engineering

	Core	Electives : BE/ME Option (Choose 1)				
Code	Title	ECTS	Code	Title	ECTS	
RE4002	Spatial Robotics	6	ID:8098	Project 2 Digital Mechatronic Engineering (only if BE path chosen)	12	
RE4012	Machine Vision	6	IE4248	Project Planning & Control (only if ME path chosen)	6	
			EE4042	Master of Engineering Project Preparation (only if ME path chosen)	6	
	Stre	ams : Cho	oose 1 Str	eam		
1. Digital Robotic Engineering			2. Digital Manufacturing Engineering			
Code	Title	ECTS	Code	Title	ECTS	
EE4216	Control 2	6	DM4006	Engineering Design	6	

Year 5 : Semester 1 - M.E. Digital Mechatronic Engineering

Core (Semester 1)								
Code	Title	ECTS	Code	Title	ECTS			
ID:8100	Research Project 1 (ME Digital Mechatronic Engineering)	9	DM6011	Automated System Design	6			
ET4021	Electronics Life Cycle Engineering	6	ME6051	Advanced Technical Communication for Engineers	3			
Streams : Choose 1 Stream								
1	L. Digital Robotic Engineerin	g	2. Digital Manufacturing Engineering					
Code	Title	ECTS	Code	Title	ECTS			
CE5002	Computer Vision Systems	6	DM6031	Automation & Control	6			

Year 5 : Semester 2 – M.E. Digital Mechatronic Engineering

Core (semester 2)								
Code	Title	ECTS	Code	Title	ECTS			
ID:8101	Research Project 2 (ME Digital Mechatronic Engineering)	12	DM6022	System Integration	6			
EE5052	Robotic Sensing & Perception	6						
Streams : Choose 1 Stream								
1	1. Digital Robotic Engineering 2. Digital Manufacturing Engineering							
Code	Title	ECTS	Code	Title	ECTS			
EE5042	Robotic Planning, Mapping & Manipulation	6	EE6452	Digital Control	6			