Introduction to Mechatronics MEC100x – Lectures 2

Energy, Power and Intelligent Control

School of Electronics, Electrical Engineering and Computer Science

Ashby Building

Queen's University Belfast

Aims

- 1. Basic electronics Review
- 2. Voltage- Current- Resistor, Capacitor, Inductor- Impedance- Power
- 3. Voltage division

Key Concepts

- Voltage
- Ground
- Current
- Resistor
- Capacitor
- Inductor
- Impedance
- Power

Basic Electronics Review - 1

- Voltage
 - "Pressure"
 - Pressure on electric charge (e-)
 - Units are in Volts
 - Urges charge to 'flow'
 - Measured relative to a reference pressure level
 - An "across" quantity we measure it <u>across</u> two points (Don't say 'the voltage through...')

Voltage source acts like a pump

Ground is often taken as the low-pressure point, but any point could be taken as 'ground' $ex. V_{AD} = V_i = -V_{DA}$

Basic Electronics Review - 2

• Current

- "Flow"
 - Flow of electric charge (e⁻). Units are in Amps
 - The response of charge to applied voltage
 - Need a **complete** circuit for current to flow
 - A "through" quantity we measure it *through* an element

We will assume '<u>conventional</u>' current flow – positive charges flow out of the + terminal and return to the - terminal

Resistors are considered to be **the most used and the most important component** of all the electronic circuits.

http://www.circuitstoday.com/working-of-resistors

Symbol of Resistor

Color Coding

• The value of the resistance is found out by color coding. The resistors have a band of colors shown in their outer covering. Here are the steps to determine the value of the resistor.

Number	Color
0	black
1	brown
2	red
3	orange
4	yellow
5	green
6	blue
7	violet
8	grey
9	white

Resistors despite energy as heat

• Standard power ratings for resistors:

- **1/8 W** (~3.0 mm long x 1.8 mm dia.)
- 1/4 W (~6.3 mm long x 2.2 mm dia.)
- **1/2 W** (~9.2 mm long x 3.2 mm dia.)
- $\mathbf{1} \mathbf{W} \qquad (\sim 11 \text{ mm long x 5 mm dia.})$
- **2 W** (~14 mm long x 6 mm dia.)

Why do we need resistors?

1. Limit current flow

2. Divide voltage

Capacitors store energy as an electric field.

Symbol of capacitor

https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/schematic-symbols-part-1

$1 F = 10^3 mF$

- $= 10^{6} \mu F$
- $= 10^9 \text{ nF}$
- = 10¹² pF

Unit of Capacitance

• Capacitance is normally given in uF or PF.

- Ceramic (1 pF- 10 uF) and Film (10 pF- 100uF).
- Low- leakage current ; long life
- **Can be temperature sensitive**
- Useful at high frequencies

https://www.linquip.com/blog/what-is-ceramic-capacitor-2/

Polarized Capacitors

- □ Aluminium and Tantalum Electrolytic
- Typically 1 uF- 0.1 F
- No AC without DC Bias(May burst)
- High- leakage current ; short life
- > Large capacitors can hold a significant charge for a long time.

Aluminum electrolytic capacitors

https://en.wikipedia.org/wiki/Electrolytic_capacitor

Why do we need capacitors?

- Energy storage
- Signal coupling/decoupling
- Noise filters
- Power conditioning

		Letter Code	Tolerance Value
Capacitors		В	±0.1 pF
	473K	С	±0.25 pF
	4701	D	±0.5 pF
	25V	F	±1 %
		G	±2 %
		J	±5 %
		К	±10 %
		М	± 20 %
		7	+ 80 % - 20%

https://electricalfundablog.com/decode-capacitor-number-marking/

Capacitance values for smaller capacitors are usually given in picofarad (pF).

□ If there are two numbers, read value in pF.

 \Box If there are three numbers, use first two to establish a value in pF, then multiply by 10^{x} .

x is third number.

Letter code normally indicates capacitor tolerance, as in the provided table.

Inductors store energy as an magnetic field.

Symbol of inductor

https://www.coilws.com/index.php?main_page=index&cPath=208_212

shutterstock.com · 2138778243

Inductance normally given in mH.

Why do we need inductors?

- Actuators (Motors, electromagnets, mechanical switches,...)
- Analog filters
- "Chock" off input ripple.

a de la como

5 Pin Relay Terminals

Letter Code	Tolerance
F	1%
G	2%
н	3%
J	5%
к	10%
М	20%
Z	+80%, -20%

Inductors

- inductor values for smaller inductors are usually given in Micro-Henries (uH).
- If there are two numbers, read value in uF.
- If there are three numbers, use first two to establish a value in uH, then multiply by 10^{x} .

3R3K

- x is third number.
- Letter code normally indicates inductor tolerance, as in the provided table.

KRICHHOFF'S Current LAW (KCL)

• $\sum_{k=1}^{n} I_k = 0$ at any node

$$\xrightarrow{i_1} \underbrace{i_2}_{i_1 + i_2 + i_3} = 0$$

$$i_3 \uparrow$$

Elements in series experience the same current

$$i_R \longrightarrow i_C$$
 $i_R = i_C$

KRICHHOFF'S Voltage LAW (KVL) $\sum_{k=1}^{n} V_{k} = 0 \text{ around any closed circuit}$ $+ V_{S} + V_{R} + V_{R} + V_{R} = 0$

Elements in parallel circuit experience the same voltage drop

$$V_R = V_C$$

Resistors in Parallel

$$V_{out} = \frac{R_2}{R_1 + R_2} V_{in}$$

Thank You For Your Attention!

Any Question?

