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Aims

. Modelling dynamic systems

. Second-order systems

Balancing of rotating masses/Rotational-translational systems
. Natural frequency

. Compliance of dynamic elements

. Transmissibility, transfer of motion through the support of a dynamic
system
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Rotational Mechanical Systems
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Basic Elements of Rotational Mechanical Systems

Rotational Spring
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Basic Elements of Rotational Mechanical Systems

Rotational Damper
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Basic Elements of Rotational Mechanical Systems

Moment of Inertia
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Example-1
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Example-2
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Contents

* Stiffness in Precision Engineering

 Compliance of (a combination of) dynamic elements
* Dynamic modelling of damped mass-spring systems.
* Transmissibility

* Coupled mass-spring systems

e Standard mechanical frequency responses
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What is a realistic low stiffness value in a
mechanical connection?

1

10

100
1000
10000
100000
1000000

A - o A o

Valuesin N/m
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What is a realistic high stiffness value in a
mechanical connection?

10°
10°
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108
10°
1010
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Values in N/m
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Stiffness of objects

Well known objects

10* N/m Soft pillow

4 Car suspension
10" N/im Soft couch
10° N/m Table

Bicycle

10" N/m Office building
10° N/m Concrete pillar
10° N/m Steel train wheel on steel rail track
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What is stiffness in precision machining?

Hooke’s law for force from spring:

Fs — _kdX | Rotatingworkpiece
“Hooke-Newton” law for I .
Lathe Cuttingtool
external force:
L
m
F =F =kadx .

F gk
K

Where should you place the stiffness if possible?
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Natural frequency of the resonance of a
mass-spring system

* At resonance the forces are in balance 3
. . m E
e Deformation force (stiffness) plus - —*
acceleration force (mass) is zero. % y T Xq

< _
N Stationaryreference NN

2 2
dt dt FV:O
- 4
-

ST O mass

Spring stiffness

Natural frequency
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The first natural frequency determines the sensitivity to harmonic vibrations!

2 2

Fa+Fd:md—)§+kxe=O = md—);=—kxe
dt dt

x=X. sin(wt)

*The maximum force needed to follow the acceleration:

F =ma =mR o’

k .
*The maximum error due to this force: 'm '}:’” d°5C°pe
: a
. F mx @’ X, Mo’
Xe = — = —)A—z
kK k K ‘
et
Object

*The natural freq Vibrations x;

o S
< 7

Table top \J
*Which results in: 2 ~
A A a) fo Xf
Xe = Xf —2 — — = f— fO 2 f -
@, f Xe ,
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Contents

* Stiffness in Precision Engineering

 Compliance of (a combination of) dynamic elements
* Dynamic modelling of damped mass-spring systems.
* Transmissibility

* Coupled mass-spring systems

e Standard mechanical frequency responses
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Stiffness and compliance

e Stiffness is the ability of a system to withstand a force by minimising the
resulting motion/deformation

 Compliance is the opposite of stiffness

* Both can be real, in phase with a periodic force, or complex, dynamic,
frequency dependent, 90° out of phase with a periodic force.

Output/input
* A spring has a real stiffness/compliance: @:1 1
- ®
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Compliance of (a combination of)
dynamic elements

T
x| =

Elrr -

« k = stiffness of the spring
¢ = damping coefficient of the damper
* m = mass of the body
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Stiffness and compliance of a damper

/ ]
CEN
Fv=@veloci®x/dt) == Fv(s)=c. S. X(s)

d

F(t)=cd—)t(, F(s) = L{F (t)} = scx
mmm) F(0)=F{F(t)}=_jcox

S=jw 1 1
C =
@ jcw
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Stiffness and compliance of a mass body

S=jw ‘ F(w)=F {F()}=-mw°X

1 X
@ :F

Output/input
F=k.x mmp X/F=1/k
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Combined Compliance of body, spring and

damper
oI5,
A
Total force
Fi(w) ==
Body ¢, Spring
En(a))z )f =—I7’IC()ZX X F :i:]QC
“m CC
F= M. a

F= Fv + Fm+ Fs=M. a

Ft(a)):Fs+Fd(a))+Fm(a)):x( . + = + = jz X

=
<
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Overview of the dynamic properties

Item Spring Damper Body
Variable k c m
External force Fs(w)=kx Fyq(w) = jewx Fy(w) = —mw?x

o F- F F ‘
(dynamIC) ks(w)= ==k kd((u) — —d((u) = jC(U km(w) = —b((u) = —In(r)2
X X x
Stiffness
2 X 1 x x 1
dnamlc Cs =L=" Cilw)= —(w)= — C )= —(w)=— -
(‘foi’lplianc)e s(w) ok d() Fq () o m(w) 7 (w) —
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Contents

* Stiffness in Precision Engineering

 Compliance of (a combination of) dynamic elements
* Dynamic modelling of damped mass-spring systems.
* Transmissibility

* Coupled mass-spring systems

e Standard mechanical frequency responses
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Start with second law of Newton

F=m.a
m.a cV
o F(t) = kX
‘/'O (C/It ) % k “XOJ‘X Laplace gives:
F(s) = L{F (t)}= x(ms® +cs + k)

ANNNN séawy reference .\ NN\
Output/input= x/F= 1/ ms”™2+ c.s + k
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Start with second law of Newton F=m.a

F X=output
= Input
0 F-Kx-C.v=m.a
m
: FO-m3X s g

/ txo dt? dt
—|ic|F <k
1 j I % ‘ Laplace gives:

F(s) = L{F ()} = x(ms® +cs+k)
1

ms® +CS+k CDS +i+1

Ct(s)=xfm()

=)

Output/input= x/F= 1/ m. s"2+ c. s + k= = 1/ m/k. s"2+ c/k. s +1
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Start with second law of Newton F=m.a

2
5 Fay=m3X e & k)
m ) dt dt
0O
/) A Xo Laplace gives:
—[c|F K ‘
““““ F(s) = L{F ()} = x(ms® +cs+k)
\\\\ Stationary reference \\\\ 1
X 1
C.(s)= F”‘(S) = MSZ + 05 + K = k oS With only positive
k52 + s +1  imaginary terms (Fourier):
Natural
. frequency
Kk C X
— = =|,[— C(w) =F{F()}=—(0)=—
Wy Wy
e B ©) C=damping , k=stiffness QUEEN'S
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The damping ratio gis related to the pole location

in the Laplace plan S—o4 o

Poles are those values of s where denominator of C,is zero
1

_ k B C

C, == s
t = = T Q2
P M, S, 5 -1
K K W} .

pp=—0+ ja)d,n P, =—0-— ja)d,n O = (a, Dyn = 0)0‘\/1—4’2

Zeta=0, C=0
If c=0then £ =0 no damping!

d pE=+jo, and p,=-]o,
wO=sqrt(k/m)

m/k SA2+1=0 )

=
<
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Transmissibility, transfer of motion through the support
of a dynamic system

The force acting on the body equals

f m e
d u N .
Fon (0 - ®+k<xf x) e 2k /)
- Table \\;;L]
||~ Stationary reference

—+1

| _\/? damping
With: D=4 @: > In—)>

Stiffness

Output=xm/input=xf

20> 41
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What means the additional dynamic term in
the numerator.

Compliance Transmissibility

=
<
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Example: Automobile Suspension
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Automobile Suspension
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Automobile Suspension

mX, +b(X, — %) +k(x, —%;) =0 (eq.1)

mX, + bX, + kx, =bx; +kx eq. 2

Taking Laplace Transform of the equation (2)

ms* X, (s) +bsX,(s) + kX, (s) =bsX;(s) + kX (s)

Xo(s)  bs+k
0O Xi(s)  ms?+bs+k
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Active controlled vehicle suspension

CITROEN
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Comfort of a car depends mainly on:

. Stiffness of the suspension

A
B. Damping of the suspension
C. Stiffness of the tyres

D

. Damping of the tyres
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Impact of stiffness on vehicle
control

7 Low stiffness <" High stiffness

The car is more The car is less sensitive
sensitive for load and for load and load

load variations (pump, variations (pump, roll
roll and tilt) and tilt)

»

A high stiffness is
necessary
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Impact of stiffness on comfort

Increased stiffness

e ’ Q=)
E\WASE AT P AL
" Yt

Not comfortable
Racing car. Shaken
passengers

Not comfortable, boat Just comfortable
effect. Car sickness enough depending
on taste

The margin is small and influenced by mass, load and

damping. Passive systems are never really optimal.
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Impact of damping




Thank You For Your Attention!

Any Question?

\
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