Active electronic-MEC100x-Lectures 5

Energy, Power and Intelligent Control
School of Electronics, Electrical Engineering and Computer Science
Ashby Building
Queen's University Belfast

Aims

1. Electro-mechanical switches (Relay)
2. Solid state relay (SSR)
3. FET/MOSFET as ON/OFF switching

Active electronic (Transistors)

Amplification:

Magnify a signal (Voltage-Current) by transferring energy from an external sources.

Switching:

Controlling a relative large current between or voltage Across two terminals using a small control current or voltage.

In Cut-off and Saturation Regions, BJT acts as a Switch

Cut-off: Open Switch Voltage Vce can be viewed as a open switch.

$$
i_{B}=0 ; \quad i_{C} \approx 0 ; \quad V_{B E}<V_{F} ; \quad V_{C E} \geq 0
$$

Saturation:

Closed Switch: Max collector current Voltage Vce can be viewed as a open switch ${ }^{{ }^{i}}$

$$
\begin{aligned}
& i_{B}>\frac{i_{C}}{\beta} ; \quad V_{B E}=V_{F} ; \\
& V_{C E}=V_{S A T} \approx 0.2 V
\end{aligned}
$$

Point A:
$i B \approx 0$ or small VIN $<0.6 \mathrm{~V}$
Transistor is cut-off
$i C \approx i E \approx 0 \Rightarrow$ VOUT \approx VCC
Switch is Open!

Point B:

$i B>i B$ (sat) or large VIN $>0.7 \mathrm{~V}$
Transistor is saturated.
$V O U T=V C E($ sat $) \approx 0.2 \mathrm{~V}($ very small $)$
Switch is closed!

$$
\begin{aligned}
& i B=V I N-V B E(S A T) / R B ; \\
& i C \approx V C C-V C E(S A T) / R \mathrm{~L}
\end{aligned}
$$

QUEEN'S

Based Current can toggle BJT Switch;

Choose circuit values such that, when Vin goes High;

$$
i B>i C(\text { limit }) / 10
$$

BJT Switch is not immediate and instantaneous;

tD (Delay time)
When we apply ON-Voltage to Base of transistor. Transistor remains OFF after input current (Base Voltage-VB) is applied, the required time for this happening is TD.

t_{R} (Rise time)

Required Time to reach 90% of final voltage value.

ts (Storage time)

Required Time remains close to the maximum value after input current is removed.
t_{F} (Fall time)
Required Time to fall the signal to below 10% of final voltage value.

BJT Switch is not immediate and instantaneous;

Turn-ON Time:

ton $=\mathrm{tr}_{\mathrm{r}}+\mathrm{t}_{\mathrm{d}}$

```
Turn-OFF Time:
toff= ts +tf
```

Typical values for (2N3904) transistor:

- $t_{d}=35 \mathrm{nsec}$
- $t_{r}=35 \mathrm{nsec}$
- $t_{s}=200 \mathrm{nsec}$
- $t_{f}=50 \mathrm{nsec}$
turn-0N time $=70 \mathrm{nsec}$ turn-0FF time $=250 \mathrm{nsec}$

QUEEN'S

Example: BJT as ON/OFF switch;

LED Driver:

Select RB to protect logic control circuit:

5 V: High level
$0 \mathrm{~V}=$ Low level
Here; I going to calculate R_{B} (Base resistance):
$R_{B}>\left(V_{I N}-V_{F}\right) / I_{D o, \max }=4.3 \mathrm{~V} / 40 \mathrm{~mA}=107.5 \Omega \approx 110 \Omega$
IDO,max; Is current can draw from Microcontroller and goes to the Base of transistor.

Digital output can supply 40 mA when Vin is high.

Example: BJT as ON/OFF switch;

LED Driver:

How we can calculate Rc (collector resistance)? Select RC to protect LED: VCC=5V
\square (Maximum collector current: $\left.i_{C}(\max)\right)=P \max / V_{L E D}=80 \mathrm{~mW} / 2 \mathrm{~V}=40 \mathrm{~mA}$
$\square \mathrm{Rc}($ collector resistance $)>V C C-V_{L E D}-V C E(s a t) / i c(\max)=(5-2-0.2 \mathrm{~V}) / 40 \mathrm{~mA}=70 \Omega$To maintain hard saturation, $i_{B}>4 \mathrm{~mA} \Rightarrow R_{B}<1075 \Omega$
we explained completely about calculation of ic (max), Rc (collector resistance) and RB

A photo-interrupter acts as an optical switch ;

Photo-interrupter: Pair of LED + Phototransistor

Can be used to detect the presence of an object that may partially or completely interrupt the light between LED and phototransistor.

Photo-Interrupter

Opto-Isolator provides circuit separation;

Opto-coupler: Pair of LED + Phototransistor

(1) Anode
(2) Cathode
(3) Emitter
(4) Collector

Electro-mechanical switches (Relay)

園 QUEEN'S
UNIVERSITY

RELAY SWITCHES ELECTRO-MECHANICAL Component

$>$ A very important component in an Electrical Circuit.
$>$ A relay is a simple electromechanical switch made up of an electromagnet and a set of contacts.

Relay Construction

Relays are amazingly simple devices.
There are four parts in every relay:

1. Electromagnet
2. Armature that is attracted by the electromagnet
3. A Spring
4. A Set of electrical contacts

RELAYS

Factors when looking at a relay

We must pay attention to it:

- Coil terminals
- Number of switching contact sets
- Rating of the coil voltage
- Rating of the contact voltage and current
- Structure of the pin layout

CONTACTS

Symbol schematic of N.O and N.C

Relays \& Coils

ELECTRO-MECHANICAL
RELAY SWITCHS can isolate electrical circuits

https://slab.concordia.ca/arduino/relays/

Interfacing ELECTRO-MECHANICAL, RELAY SWITCHS with Micro-Controllers

When Arduino sends High (1) command to BJT- BJT switch will be ON ---- Relay will br ON--- DC Motor will be ON.

When Arduino sends Low(0) command to BJT-BJT switch will be OFF ---- Relay will be OFF--- DC Motor will be OFF.

Arduino UNO

5V Relay Module

- The module provides all the required components (Protection diode- Transistor switch and current- limiting resistor) and an indicator LED.

ELECTRO-MECHANICAL Relay Exercise

- When the relay is ON then Buzzer should sound.

ELECTRO-MECHANICAL Relay

DPros
DInexpensive
-Large selection
-Resistant to electrical surge

DCons
\square Bulky
\square Slow (5 to 15 msec) switching time
\square Limited cycle rate

Solid State Relays (SSR)

-What is Solid State Relay (SSR)?

\square Solid state relay (SSR) is an electronic switching device made of semiconductors that switch (On \& Off) a high voltage circuit using a low voltage at its control terminals.
\square Unlike EMR (Electromagnetic relay) that has a coil \& mechanical switch (physical contacts), the SSR relay uses Optocoupler to isolate the control circuit from the controlled circuit.

Difference between SSR \& EMR

The operation of SSR (Solid State Relay) and EMR (Electromagnetic Relay) or contact relay is same while the main different between SSR and EMR is that:

- 1- There are no mechanical parts and contacts in SSR relay.
- 2- Other different between Solid State Relay and Electromagnetic relay are that there is no surge and noise during the operation of SSR.
- 3- There is a chance of leakage current about few $\mu \mathrm{A}$ to mA in SSR relay while the value of leak current is Zero (0) in EMR.
- 4- On the other hand, SSR switch OFF AC loads at the point of 0 load current which leads to eliminate the noise, contact bounce and electrical arcing in case of inductive load as compared to EMR relays.

Solid State Relays(SSR) with terminal designations Visible

1: 1,2 load terminal- load voltage can be vary between 24-380 VAC.
2: [+]: 3, is control logic input(can be High and Low) logic high can be up to 32 V or as low as 3 V .
3: [-]: 4, is control logic ground

Solid State Relays(SSR)

Schematic Model of SSR Relay

A general schematic for the operation of a DC to AC SSR relay's operation with model schematic is given below:

DC to AC SSR Relay

https: / / roboticadiy.com/ how-to-use-solid-state-relay-to-control-240v-120v-with-5v-arduino/

Field-Effect Transistors(FET) are usually either JFET or MOSFET

JFET = Junction FET

MOSFET = Metal- Oxide-semiconductor FET

Threshold Voltage defines MOSFET operation.

1- Threshold voltage (VT) is the voltage between gate and substrate when N channel begins to form.

2- Threshold voltage(VT) may be denoted as $V G S($ on $)$ and is typically between and 5 V .

Gate Voltage can toggle MOSFET Switch.

Point $\mathbf{B}\left(V_{I N}>V_{T}\right)$

- transistor is in Ohmic region
- $V_{O U T}=V_{D D}-V_{D S}=V_{D D}-i_{D}\left(V_{G_{1}}\right) \cdot R_{D}$
- Switch closed!

Thank You For Your Attention!

Any Question?

