# Analog-to-digital conversion (ADC) MEC100x-Lectures 7\_1

Energy, Power and Intelligent Control

School of Electronics, Electrical Engineering and Computer Science

Ashby Building

Queen's University Belfast





# Aims of this lecture are:

- 1. Why ADC?
- 2. Sample/Hold
- 3. ADC Essentials
- 4. Converter errors, converter resolution, conversion time, Quantization Interval
- 5. Analog input signal ranges and resolution
- 6. Parallel or Flash ADC





# Good understanding Analog Vs Digital

- Many of our electronic devices are digital circuits; robotic systems- industrial plants- Daily Life systems
- These kind of electronic devices use analog sensors to interact with the real world/industrial processes.
- Analog signal provides a signal that can be between 0 volts and give a maximum voltage like 5 volts or 9 volts.



#### LDR resistance- Light Sensor





### **Analog Sensors**

- Sensors produce continuous analog signal. Analog signals: There are continuity in the signal.
- Standard ranges of analog signal are: 5V DC, 10V DC, 0 to 20 mA, 4 to 20 mA,...
- There are various types of analog sensors such as temperature, humidity, colour, pressure, light, sound sensor, ultrasonic

#### sensor and gas sensor, etc.







https://www.smlease.com/entries/automation/what-are-different-types-of-sensors-and-



### **Binary**

□ Binary is a series of 1 and 0 for example(4 bits: 1000, 0110, 0001, 1101,1111,...).

#### We can compare:

- **Digital to a light switch turning the light either ON/OFF.**
- Analog would be like a dimmer switch that is able to set the light level to any brightness between maximum and OFF.







# Why ADC?

- Digital Signal Processing is more popular
- Low impact of noise on these signals
- Computer and Microcontroller processing are binary and digital
- Data from real world are typically analog signal
- Needs conversion system from raw measurements to digital data
- Digital Signal Processing Consists of
- Amplifier, Filters
- Sample and Hold Circuit, Multiplexer, ...
- ADC, DAC



**Beaglebone** 



## ADC and DAC

### Digital-to-Analog Conversion (DAC)

- D/A; Converts a binary value to a scaled 'analog' voltage
- D/A is used for controlling systems that require an analog actuators input such as :
  - DC servo motor
  - Resistive heater, etc.

### Analog-to-Digital Conversion (ADC)

- A/D; Converts a continuous analog voltage into discrete binary values
  - A/D is used to translate continuous physical phenomena into a language the computer understands (Binary Code).





#### Analog signals

- Any continuous signal- smooth continuous slope that a time varying variable of the signal is a representation of some other time varying quantity.
- Analog signal is a form of electrical energy (voltage, current or electromagnetic power) that there is a linear relationship between electrical quantity and the value on each time.







# Signals:

# continuous signal- smooth continuous signal- smooth continuous signal- smooth continuous slope





https://www.youtube.com/watch?v=g4BvbAKNQ90



https://slideplayer.com/slide/4584344/



The Waveform of a digital signal changes in steps with **a finite number of steps** equal to the ADCs resolution divided between 0 Volts and the maximum voltage. Signal change at each step goes **low to high and high to low** 

### 3-bit ADC 2^n step



# ADC

#### **Digital signals**

• Consist of only two states

Time

- Binary states
- ON and OFF





111





A/D Conversion Converts analog input into digital values





https://engineering.purdue.edu/ME588/LectureNotes/Unit5a--ADConversion.pdf



# Two main steps of process

**1**- sampling and holding

### 2- quantization and coding











#### **1-** sampling

#### • Measuring analog signals at uniform time intervals (Ts) (Ideally twice as fast as what we are sampling)







https://slideplayer.com/slide/458434

RSITY

### ADC Process

#### **1-** sampling

Digital system works with discrete states 

□ Taking a sample from each location.





https://slideplayer.com/slide/4584344/





### ADC Process

#### **1- Holding**

- Reflects sampled and hold signal
  Digital approximation
- Digital approximation





https://slideplayer.com/slide/4584344/



https://engineering.purdue.edu/ME588/LectureNotes/Unit5a--ADConversion.pdf



Sample

#### Analog to Digital Conversion



Process of converting an analog signal to a digital number



#### Three step procedure



Sampling (sample and hold)



Quantization



Coding





### **ADC Essentials**



**n bits ADC** Number of discrete output level :  $2^n$ 







# Quantization

Separate the input signal into a discrete states with K increments

- **G**  $\mathbf{K} = 2^n$  n is the number of bits
- Analog size Quantization

Q = LSB = ( (Vmax-Vmin) = FS) /  $2^n$ • Q is Resolution

### **Quantization Error**

+ - 1/2 LSB
Reduced by increasing n







# **Quantization & Coding**

Apply 2 bit coding







# **Quantization & Coding**

Apply 3 bit coding







# **Converter Errors**











#### □ Nonlinear Error: Hard to remove





#### Converter Resolution

The smallest change required in the analog input of an ADC to change its output code by one level

#### Converter Accuracy

□ The difference between the actual input voltage and the full-scale weighted equivalent of the binary output code.

□ Maximum sum of all converter errors including quantization error.

#### Conversion Time

**Required time (tc) before** the converter can provide valid output data

#### Converter Throughput Rate

The number of times the input signal can be sampled maintaining full accuracy
 Inverse of the total time required for one successful conversion



□Inverse of Conversion time if No S/H(Sample and Hold) circuit is used



# Analog Input Signal

Typically, Differential or Single-ended input signal of a single polarity

 $\hfill\square$  Typical Input Range  $0 \simeq 10V$  and  $0 \simeq 5V$ 

#### □ Matching input signal and input range

□ Pre-scaling input signal using OP Amp

□ In a final stage of preconditioning circuit

By proportionally scaling down the reference signal

☐ If reference signal is adjustable





### Inputs/Outputs and Analog Reference Signal

### I/O of typical ADC



### **ADC output**

8 and 12 bits are typical
10, 14, 16 bits also available

Errors in reference signal

> From

Initial Adjustment

- Drift with time and temperature
- Cause

Gain error in transfer characteristics





### Sampling rate:

□ Sampling occurs when the input signal is changing much faster than the sample rate

### Nyquist rule:

Use a sampling frequency at least twice as high as the maximum frequency in the signal to avoid aliasing

Fsample > (2 \* Fsignal)





https://www.allaboutcircuits.com/technical-articles/the-nyquistshannon-sampling-theorem-exceeding-the-nyquist-rate/



### Nyquist rule:

### □ Aliasing *Fsample* < (2 \* *Fsignal*)

### Sampling and Aliasing

we see that aliasing happens when the sampling frequency (fs) is less than twice the maximum signal frequency (fmax), we will have overlap in signal.



https://www.allaboutcircuits.com/technical-articles/the-nyquistshannon-sampling-theorem-exceeding-the-nyquist-rate/





### Example



https://engineering.purdue.edu/ME588/LectureNotes/Unit5b--DAConversion.pdf

#### Rule of Thumb

- □ For control, sample (20x) faster than signal.
- □ For data analysis, sample at least (2 x) faster than signal.





### Successive Approximation ADC

### **Conversion Time**

Maximum n+1 clock for an n-bit ADC
Fixed conversion time

### Serial Output is easily generated

Bit decision are made in serial order





https://slideplayer.com/slide/4584344/



### Successive Approximation ADC

Usually used with a Multiplexer– many channel feed to a single converter

Effective conversion speed for multiplexed ADC depends on number of channels used.

Arduino ADC 6-channel 10-bit ADC







### Analog to Digital Converter Flash

- 1. Uses comparators to determine input voltage range.
- 2. First type of ADC we can see how a comparator is responsible for each step change.
- 3. A comparator has two inputs if the positive input is greater the output is a high (1).
- 4. if the negative input is greater the output is a low (0).



https://www.youtube.com/watch?v=g4BvbAKNQ90





# **3 Bit Flash ADC**







# **3 Bit Flash ADC**

video



https://www.youtube.com/watch?v=g4BvbAKNQ90





### Analog to Digital Converter Flash (Direct converter ADC)

Also Known as a Parallell ADC

- 1. Uses comparators to determine input voltage range.
- 2. Gate logic converters comparator output to digital value.
- 3. Fast; Typical conversion time: 10- 500 nSec







### Analog to Digital Converter Flash (Direct converter ADC)

| <b>C3</b> | C2 | <b>C1</b> | MSB | LSB |
|-----------|----|-----------|-----|-----|
| 0         | 0  | 0         | 0   | 0   |
| 0         | 0  | 1         | 0   | 1   |
| 0         | 1  | 0         | X   | X   |
| 0         | 1  | 1         | 1   | 0   |
| 1         | 0  | 0         | X   | X   |
| 1         | 0  | 1         | Х   | X   |
| 1         | 1  | 0         | Х   | X   |
| 1         | 1  | 1         | 1   | 1   |

EDU









### ADC is not instantons

### **Aperture Time**

Time needed for an ADC to convert a voltage to a binary code, during which input signal may change.



https://engineering.purdue.edu/ME588/LectureNotes/Unit5a--ADConversion.pdf

 $\Box$  Want  $\Delta V$  to be small.

 $\Delta V < Q$ 





### **Thank You For Your Attention!**

### **Any Question?**





